Sound Asleep

Harmonic Cadences in the Human Sleep Cycle

Prof Morten Kringelbach University of Oxford

Dr Milton Mermikides University of Surrey

Blue Jay Way

Simple Harmonic Ratios Consonant

More complex Harmonic Ratios Dissonant

Blue Jay Way analysis

Blue Jay Way's strange cadence

Dissonance

Consonance

Blue Jay Way Harmonic Reduction - Dissonance resolved in place

Blue Jay Way Sanitised Version - Dissonance resolved 'away'

Blue Jay Way Harmonic Reduction - Dissonance resolved 'in place'

B A C H

The unfinished *Contrapunctus XIV* C.P.E. Bach's note reads "*At the point where the composer introduces the name BACH in the countersubject to this fugue, the composer died.*"

Another of 100s of examples through the ages...

Dimitri Schostakovich

D Eb(S) C H

Extending the concept

Villa-Lobos (1887-1959)

VILLA-LOBOS: NEW YORK SKY LINE MELODY - GRÁFICO DERIVADO DA VERSÃO DE 1957. (C. KATER, 1982)

The coronal suture of the skull [has] a certain similarity to the closely wound line [...]of a phonograph [...] Suppose, one played a trick on this needle and caused it to retrace a path not made by the graphic translation of a sound, but self-sufficing and existing in nature [...] what would happen?

Image ©2004 Palmer

Ur-Geräusch (Rilke 1919)

Image ©2005 Supranowitz

Primal Sound (2004)

MUSIC IN THE BLOOD

BloodLines (2004, 2013)

DATE	WBC	RBC	HB	HCT	MCV	MCH	MCHC	RDW	Platelets	Neutroph	Lymphocy	Monocy	Eosinop	Basophi
22/11/04	340.0	5.74	10.0	0.343	59.7	17.4	29.1	17.0	31					
23/11/04	332.0	3.23	10.5	0.317	59.3	19.6	33.1	16.8	39					
24/11/04		4.74	8.3	0.280	59.2	17.5	29.5	16.5	35	14.4	311.0	19.5	0.4	0.2
24/11/04	345.0	4.66	8.5	0.200	59.3	18.3	30.8	16.8	73					
24/11/04	370.0	4.90	7.3	0.300	61.1	10.1	29.3	16.2	72					
25/11/04	242.0	4.42	8.2	0.266	60.1	18.6	31.0	16.0	72	12.4	212.0	17.5	0.3	0.2
25/11/04	81.4	4.63	9.1	0.276	59.5	19.7	33.1	15.8	50	8.6	68.6	4.0	0.2	0.0
26/11/04	17.9	4.10	0.5	0.252	60.2	20.3	33.8	15.0	32	4.4	12.7	0.7	0.0	0.0
26/11/04	16.3	4.18	8.3	0.249	59.5	19.9	33.5	15.4	32	4.4	11.3	0.5	0.0	0.0
27/11/04	6.6	3.72	7.7	0.225	60.5	20.7	34.3	15.3	18	2.5	3.9	0.2	0.0	0.0
28/11/04	5.6	3.79	7.7	0.226	59.6	20.3	34.0	15.1	17	1.8	3.7	0.1	0.0	0.0
28/11/04	5.7	3.84	7.8	0.228	59.4	20.4	34.3	15.1	16	1.7	3.8	0.1	0.0	0.0
29/11/04	4.0	3.23	6.6	0.197	61.1	20.6	33.7	15.4	13	1.1	2.9	0.1	0.0	0.0
30/11/04	5.3	4.14	9.3	0.263	63.5	22.5	35.4	20.2	36	1.9	3.3	0.1	0.0	0.0
01/12/04	5.4	3.90	8.7	0.250	64.2	22.3	34.7	20.1	A 30	1.6	3.6	0.1	0.0	0.0
02/12/04	5.2	4.40	9.0	0.200	63.6	22.4	35.2	20.7	43	A 2.1	2.0	0.3	0.0	0.0
02/12/04	5.5	4.21	9.3	0.270	64.1	22.2	. 134.6	20.7	37	2.9	2.3	0.3	0.0	0.0
03/12/04	2.5	3.73	8.3	0.239	64.2	22.3	N 34.8	120.8	51	2.0	0.5	0.0	0.0	0.0
04/12/04	3.2	3.25	7.1	0.211	65/0	21.9	33.6	20.8	66	1.5	1.6	0.1	0.0	0.0
05/12/04	2.8	3.59	8.7	0.246	68.5	2411	35.2	22.6	113	1.4	1.4	0.0	0.0	0.0
06/12/04	4.0	3.04	9.4	0.271	70.5	24.6	34.8	22.0	220	2.7	2.1	0.0	A0.0	0.0
07/12/04	3.0	3.44	8.3	0.247	71.7	24.0	33.5	23.0	240	1.1	1.9	0.0	1 10.0	0.0
08/12/04	2.1	3.31	8.2	0.285	71.1	24.9	35.0	23.0	281	0,6	1.4	10.1	0.0	A 0.0
09/12/04	2.0	3.40	0.0	0.249	71.4	25.1	35.2	23.3	270	0.0	0.9	0.2	0.0	1 0.0
10/12/04	3.2	4.38	10.7	0.324	74.1	24.6	33.2	23.1	289	2.1	0.9	0.2	0.0	1 0.0
11/12/04	2.8	4.09	10.0	0.305	74.7	24.5	32.8	23.1	292	1.7	0.9	0.1	0.2	0.0
12/12/04	1.6	4.16	10.2	0.315	75.6	24.4	0.32.9	29.0	5707200	0.6	1.0	0.0	0.0	0.0
13/12/04	2.1	4.46	10.8	0.333	74.6	24.2	CU 82.5	1.28.0	SIUGIS	0,3	1.7	0.0	0.0	0.0
15/12/04	11.7	4.29	10.6	0.317	73.9	24.7	33.4	23.2	316	11.0	0.4	0.0	0.0	0.0
16/12/04	17.7	4.17	10.2	0.318	76.1	24.4	32.1	23.3	288	15.7	1.8	0.2	0.0	a/a
17/12/04	5.0	4.24	10.5	0.318	75.1	24.9	33.1	23.0	296	3.2	1.5	0.2	0.0	0.0
18/12/04	4.3	4.40	10.9	0.329	74.9	.24.0	00.5	22.9	3.20	1.0	2.2	0,1 0.3	-+-0.0	0.0
19/12/04	2.1	3.86	9.8	0 288	74.7	25.5	34.2	22.7	221		1.4	01 01	0000	0.0
20/12/04	2.0	3.65	9.0	0.275	75.3	24.7	32.7	22.7	210	F 0.7	1.3	0.0	0.0	0.0
21/12/04	2.9	3.91	9.6	0.294	75.3	24.7	32.8	22.9	241	0.3	1.9	0.0	0.0	0.0
22/12/04	3.4	3.94	9.8	0.294	74.6	24.8	33.3	22.9	281	1.4	1.9	0.1	0.0	0.0
23/12/04	2.9	3.55	9.1	0.266	.7511	25.5	34.0	22.9	225					
24/12/04	3.7	4.20	10.3	0.308	73.4	24.5	,33.4	23.4	A 249	1.5	2.0	0.2	0.0	0.0
25/12/04	3.2	4.02	9.9	0.302	75.2	24.8	N 32.9	28.5	282	2.0	1.1	0.1	0.0	0.0
26/12/04	2.5	3.78	9.5	0.206	75.6	25.8	1 33,3	A22.6	170	V 11.9	0.6	0.0	0.0	0.0
27/12/04	1.8	3.83	9.6	0.292	76.1	25.0	32.9	22.3	145	14	0.4	0.0	0.0	0.0
28/12/04	0.8	3.47	8.7	0.263	75,9	-25.0	1 39-9	1 21.9	7 -119	11 0.5	0.3	0.0	0.0	0.0
30/12/04	0.7	3.17	8.1	0.255	80.5	KA	C SH	00	DO CA	S 0.3	0.4	0.0	0.0	0.0
31/12/04	0.3	3.39	9.0	0.264	78.0	100	a f	THE	Ju Og	110 0.0	0.3	0.0	0.0	0.0
01/01/05	0.3	3.45	9.0	0.279	81.1	26.2	32,3	19.2	32	0,0	0.3	0.0	0.0	0.0
01/01/05	0.3	3.62	9.5	0.284	78.6	26.3	33.5	19.0	25	0.0	0.3	0.0	0.0	0.0

Wellcome TrustRadio 4Aldeburgh MusicSmithsonian InstituteUCL NeuroscienceSurrey: Microbiology, Mathematics, Medicine, Programming, Sleep ResearchRutherford CentreTimes Higher EducationBritish LibraryFrank Moer InstituteTedX GroningenNordezoon Festival

CHEMISTRY MATHE DIM rngn cor

Milton Mermikides (University of Surrey) Debra J. Skene (University of Surrey) Renata Rhia (University of Edinburgh) Vlad Vyazovskiy & Nanyi Cui (Oxford University) Yurubi Rosales Suarez/ Professor Paul Krause (University of Surrey) Anna Tanczos University of Surrey Research & Innovation Support The Royal Society

MAKING SLEEP VISIBLE TO THE BLIND Debra J. Skene (University of Surrey)

Milton Mermikides (University of Surrey)

Abnormal circadian phase - poor sleep- daytime nap

MUSICAL ANALOGIES

24-Beat Cycle (Shona Mbira)

Displacement/Phase (West Africa, Steve Reich)

Diatonic/non-diatonic to represent comfort

ENTRAINED SLEEP

S12

S23

NON 24 H SLEEP/WAKE DISORDER

PSG NOCTURNE: Converting PSG data into Multi-layered compositions.

Renata L Riha (University of Edinburgh)

SEVERE SLEEP APNOEA

RESTLESS LEG SYNDROME

PSG AS SCORE

SLEEP FLUTE MELODY

SP02 TEXTURE/HARMONY

APNOEA PERCUSSION/PIZZICATO

SNORING AND PLM TIMPANI/WOODBLOCK

NORMAL SLEEP

S9

S11

APNOEA

S21

RESTLESS LEG SYNDROME

THE INNER SOUND OF SLEEP TRANSLATING EEG DATA TO THE AUDIO SPECTRUM

Vladyslav Vyazovskiy (University of Oxford)

Milton Mermikides (University of Surrey)

INALES

Pitch Domain	Gamma	32-100Hz
	Beta	14-60Hz
	Alpha	8-12Hz to 30-50Hz
	Theta	4-8Hz
	Delta	0.5-3Hz

MAN ES

- Gamma 32-100Hz
- Beta 14-60Hz
- Alpha 8-12Hz to 30-50Hz
 - Theta 4-8Hz
 - Delta 0.5-3Hz

Rhythmic Domain

[Morten HMM]

Network as Consonance/Dissonance Vectors

	0	1	2	3	4	5	6	7	8
3-1									
3-2a									
3-2b									
3-3a									
3-3b									
3-4a									
3-4b									
3-5a									
3-5b									
3-6									
3-7a									
3-7b									
3-8 a									
3-8b									
3-9									
3-10									
3-11a									
3-11b									
3-12									

1	3-1	[0,1,2]	<2,1,0,0,0,0>	Cluster
2	3-2A	[0,1,3]		Soft Cluster A (Phrygian)
3	3-2B	[0,2,3]	<1,1,1,0,0,0>	Soft Cluster B (Aeolian)
4	3-3A	[0,1,4]		Hijaz A
5	3-3B	[0,3,4]	<1,0,1,1,0,0>	Hijaz B: Twilight
6	3-4A	[0,1,5]		Desert
7	3-4B	[0,4,5]	<1,0,0,1,1,0>	Sun
8	3-5A	[0,1,6]		Viennese A
9	3-5B	[0,5,6]	<1,0,0,1,1>	Viennese B
10	3-6	[0,2,4]	<0,2,0,1,0,0>	Whole Tone Cluster
11	3-7A	[0,2,5]		Blues trichord A (Soul)
12	3-7B	[0,3,5]	<0,1,1,0,1,0>	Blues trichord B (Trane)
13	3-8A	[0,2,6]		Italian 6th A
14	3-8B	[0,4,6]	<0,1,0,1,0,1>	Lydian
15	3-9	[0,2,7]	<0,1,0,0,2,0>	Sus chord
16	3-10	[0,3,6]	<0,0,2,0,0,1>	dim. chord
17	3-11A	[0,3,7]		minor chord
18	3-11B	[0,4,7]	<0,0,1,1,1,0>	major chord
19	3-12	[0,4,8]	<0,0,0,3,0,0>	Aug. chord

Trichord Interval Vectors

Trichord category and Interval Components

Network as Musical Proximity

Multi-level hierarchical units

Network as Harmonic Function

Tonal Harmony Flow Chart... for Common Progressions in a Major Key

These triads (particularly V & vii^o)may be freely extended to 7th chords

@miltonline

Tonal Devices

Harmonic Tonal Devices: key areas/directionality

Tonal Devices

Harmonic Tonal Devices: key areas/directionality

Network as Harmonic Transformation

Neo-Riemannian Transformational Network

Pathways denote Number of common tones/intervallic proximity

Thanks